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Abstract

The package Hampath [6] is a an open-source software developped to solve optimal control problems via
indirect method but also to study Hamiltonian flow. Hampath is developped since 2009 by members of the
APO team from Institut de Recherche en Informatique de Toulouse, jointly with colleagues from the Universit de
Bourgogne (see contacts tab). Hampath is distributed under the EPL license, and is free for both academic and
industrial use.

It first deals with problems where one supposes that the maximization of the Hamiltonian gives the control
u = u(x,p) in the state and the costate, and where one also supposes that the problem is smooth, i.e. that all the
functions are smooth and that the relation u(x,p) is also smooth.

Bang-Bang problems where the control is piecewise continuous or Singular problems where the control can’t
be explicitly computed from the maximization of the Hamiltonian can be also treated.

Hampath compiles the Fortran code implementing the maximized Hamiltonian and the Limits Conditions,
into a collection of Matlab, Octave or Fortran functions (depending on the chosen user interface) which
allows first of all to solve the shooting equation. However, it is well known that the main difficulty to solve such
problems – with indirect methods based on Newton algorithm – is to find a good initial guess. So a differential path
following method has been implemented which makes Hampath the natural extension of the package Cotcot
[3]. It is also possible to compute the Jacobi fields of the Hamiltonian system to check the order two conditions
of optimality and seek conjugate points, as Cotcot does.

We invite the reader to refer to [4], [7], [8] to get more details on how works Hampath.

Index Terms

Geometric optimal control, Second order conditions, Cut and conjugate loci, Simple and Multiple shooting
methods, Differential homotopy, Automatic Differentiation, Ordinary Differential Equation.
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I. INTRODUCTION

Consider this simple optimal control problem Pλ,µ, depending on two parameters: λ and µ.

pPλ,µq

$

’

’

’

’

&

’

’

’

’

%

min
ş1

0
u2dt

9x “ v
9v “ ´λv2 ` u
xp0q “ ´1;xp1q “ 0
vp0q “ µ; vp1q “ 0,

(1)

where the final time is fixed: tf “ 1, the extremities are fixed:

q0 “ px, vqp0q “ p´1, µq, qf “ px, vqptf q “ p0, 0q

and where u is in R. A standard application of the maximum principle, see [1], [5], tells us that the so-called
normal and regular minimizing curves are the projection of extremals z “ pq, pq “ px, v, px, pvq P R4

such that
9z “

ÝÑ
H rpzq (2)

where Hrpzq “ Hpz, upzqq “ ´upzq2`pxv`pvp´λv
2`upzqq is the smooth regular Hamiltonian defined

on Ω “ R4 with upzq “ pv{2, and where ÝÑH r “ pBHr{Bp,´BHr{Bqq. Since we have boundary conditions,
the extremals we are interested in are BC-extremals. They are zeros of the shooting mapping defined by

Sλ,µ : p0 ÞÑ Πpexptf pq0, p0qq ´ qf (3)

with exptpz0q “ zpt, z0q the solution of (2) with the initial condition z0 and Π : pq, pq ÞÑ q the canonical
projection. Note that the solution of the shooting function depends on the parameters λ and µ. We call the
mapping in (3) an homotopic function as soon as we consider the parameters as independent variables.
Moreover, the (local) optimality of such extremals is checked by a rank test on the subspaces spanned by
the Jacobi fields along the trajectory. These fields are solutions of the variationnal equation

B 9z “ d
ÝÑ
H rpzptqq ¨ Bz (4)

with suitable initial conditions.
The aim of the Hampath code which extends the possibility of the Cotcot software, is to provide

numerical tools
‚ to integrate Hamiltonian systems such as (2)
‚ to solve the associated shooting equation defined by (3)
‚ to get the zeros path of an homotopic function provided by a shooting mapping depending on

parameters
‚ to compute the corresponding Jacobi fields (4) along the extremal
‚ to evaluate the resulting conjugate points, if any.

Remark 1. The Hampath package extends the software Cotcot. Moreover it permits to solve efficiently
homotopic function defined from an optimal control problem (OCP) depending on parameters, and finally
to solve OCP where the control solution is non-smooth. The structure of the control may be Bang-Bang
or Bang-Singular.

We first define in §II all the kind of optimal control problems that can be solved by Hampath. After
that, we present in §III two examples provided in the package.

Remark 2. Since a lot of time and effort has gone into Hampath’s development, please cite [6] or [7]
if you are using Hampath for your own research.
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II. OPTIMAL CONTROL PROBLEMS SOLVED BY HAMPATH

A. Optimal Control Problem and Pontryagin Maximum Principle
The following part is inspired from the course notes [14] of E. Trélat. In the next part, we present

an overview of the Pontryagin maximum principle. See [1], [5] to learn more details on optimal control
theory. We consider the following control system in Rn

9xptq “ fpt, xptq, uptqq (5)

where f : RˆRn
ˆRm

ÝÑ Rn is C1 and where the control u is an essentially bounded and measurable
function on an interval r0, tepuqq of R` which takes its values in Ω Ă Rm. Let M0 and M1 be two subsets
of Rn. We denote by U the set of admissible controls u which permit to steer the system from an initial
point of M0 to a final point of M1 in a time tpuq ă tepuq.

Moreover we define the cost of a control u on r0, ts

Cpt, uq “ gpt, xptqq `

ż t

0

f 0
ps, xpsq, upsqqds,

where f 0 : RˆRn
ˆRm

ÝÑ Rn and g : RˆRn
ÝÑ R are C1, and xp¨q is the trajectory solution of (5)

associated to the control u.

We consider the following optimal control problem: determine a trajectory from M0 to M1 which minimize
the cost. The final time can be fixed or not.

If the control u P U associated to the trajectory xp¨q is optimal on r0, T s, then there exists according to
the Pontryagin maximum principle, an absolutely continuous mapping pp¨q : r0, T s ÝÑ Rn called adjoint
vector, and a real number p0 ď 0, with ppp¨q, p0q ‰ p0, 0q, such that for almost every t P r0, T s,

9xptq “
BH

Bp
pt, xptq, pptq, p0, uptqq, 9pptq “ ´

BH

Bx
pt, xptq, pptq, p0, uptqq, (6)

where Hpt, xptq, pptq, p0, uptqq “ xp, fpt, x, uqy ` p0f 0pt, x, uq is the Hamiltonian function, and the max-
imization condition

Hpt, xptq, pptq, p0, uptqq “ max
vPΩ

Hpt, xptq, pptq, p0, vq (7)

holds almost everywhere on r0, T s.

If the final time to reach the target M1 is free, we have another condition at the final time T

max
vPΩ

HpT, xpT q, ppT q, p0, vq “ ´p0Bg

Bt
pT, xpT qq. (8)

Moreover if M0 or M1 (or both) is a manifold of Rn having tangent spaces in xp0q PM0 or xpT q PM1

(or both), then the adjoint vector must verify respectively the first or the second condition (or both) below

pp0q K Txp0qM0 (9)

ppT q ´ p0 Bg

Bx
pT, xpT qq K TxpT qM1. (10)

Remark 3. If the control u is continuous at time T , the condition (8) can be written

HpT, xpT q, ppT q, p0, upT qq “ ´p0Bg

Bt
pT, xpT qq. (11)
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Remark 4. We have for almost every t P r0, T s

d

dt
Hpt, xptq, pptq, p0, uptqq “

BH

Bt
pt, xptq, pptq, p0, uptqq. (12)

In particular if the augmented system is autonomous, i.e. if f and f 0 do not depend on t, then H does
not depend on t and we have

@t P r0, T s max
vPΩ

Hpxptq, pptq, p0, vq “ C.

Remark 5. The convention p0 ď 0 leads to the maximum principle. The convention p0 ě 0 would imply
that the condition (7) would be a minimum condition.

Definition 1. An extremal of the optimal control problem is a quadruple pxp¨q, pp¨q, p0, up¨qq solution of
the equations (6) and (7). If p0 “ 0, the extremal is said to be abnormal and if p0 ‰ 0 it is said to be
normal.

Definition 2. The conditions (9) and (10) are called transversality conditions on the adjoint vector. The
condition (8) is called condition of transversality on the Hamiltonian.

Definition 3. We call true hamiltonian the function

Hrpt, xptq, pptqq “ Hpt, xptq, pptq, p0, upt, xptq, pptqqq, (13)

when the maximum condition gives the control u in terms of pt, x, pq and with p0 replaced by its value.

To solve this optimal control problem, Hampath use indirect method as simple or multiple shooting
based on the famous Newton algorithm. In the next subsection we present how classic problems are
solved by simple shooting. We define the two points boundary value problem (TPBVP) associated to
the optimal control problem and the shooting equation. After that, we present how to deal with non-
smooth control solution. Indeed in the case of Bang-Bang control or Bang-Singular control we need to
use multiple shooting. We define then the multiple boundary value problem (MBVP) and the shooting
equation in this case. In the final subsection of this part we explain what the user has to implement and
what is automatically done. But before we introduce the core of the method hampath which consist to
replace shooting by the mere integration of an ODE. Indeed, for optimal control problems depending on
parameters, differential pathfollowing replaces Newton solver (except for the computation of the starting
point where shooting is still needed).

B. Smooth OCP and simple shooting method
We consider the following optimal control problem

pP q

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

min gptf , xptf qq `
ştf
0
f 0pt, xptq, uptqqdt, xptq P Rn

9xptq “ fpt, xptq, uptqq, uptq P U Ă Rm

b0pxp0qq “ 0 P Rn0 , n0 ď n
bf ptf , xptf qq “ 0 P Rn1 , n1 ď n.

(14)

Note that there is no condition on the final time tf , it can be fixed or free and the system may be time
dependent. The Pontryagin maximum principle gives necessary conditions on the solution and asserts that
any optimal trajectory is the projection of an extremal pxp¨q, pp¨q, p0, up¨qq. If the maximum condition (7)
gives a smooth control in terms of pt, xptq, pptqq (i.e. upt, xptq, pptqq “ arg maxvPΩ Hpt, xptq, pptq, p

0, vq,
p0 fixed, then the extremal system (6) is a differential system of the form 9zptq “

ÝÑ
H rpt, zptqq, where

zptq “ pxptq, pptqq, Hr is the true hamiltonian (Def. 3) and where p0 is omitted because it has a known
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value. The PMP gives also some transversality equations (8), (9) and (10) which can be written in the
form Epzp0q, zptf qq “ 0 P R2n if tf is fixed and Epzp0q, tf , zptf qq “ 0 P R2n`1 if tf is free.

Finally, in the case of fixed tf , we obtain the two points boundary value problem (TPBVP)

pTPBV P q

"

9z “
ÝÑ
H rpt, zq

Epzp0q, zptf qq “ 0
(15)

Let zpt, z0q be the solution of the Cauchy problem

9zptq “
ÝÑ
H rpt, zptqq, zp0q “ z0 (16)

and let define the simple shooting function S by

S : R2n
ÝÑ R2n

z0 ÞÝÑ Epz0, zptf , z0qq

The problem (15) is then equivalent to
Spz0q “ 0.

Therefore the simple shooting method consists in finding a zero of the function S. We use the fortran
Newton method Hybrj (from the Minpack library) to solve this non linear equation. A simple example
of smooth OCP is detailed in §III-A.

Remark 6. If the final time is free, then tf is one more variable of the shooting function and we add the
transversality condition (8) on the Hamiltonian.

C. OCP with Bang/Singular arcs and multiple shooting method
In comparison to simple shooting, multiple shooting splits the interval r0, tf s in N intervals rti, ti`1s

and has the values zptiq at the beginning of each sub-interval as unknowns. Then one has to take into
account some matching conditions at each instant ti (continuity condition). The goal is to improve the
stability of the method.

In the case where there are some switchings arcs and where the smoothness of the control u is lost,
the multiple shooting is used and the instants ti become the switching times. The Pontryagin maximum
principle gives conditions on the limits on the state and the adjoint vector and on the Hamiltonian when
tf is free. By limits, we mean at the initial time, the final time and the switching times.

Therefore we write in the case of fixed tf this multiple boundary value problem (MBVP)

pMBV P q

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

9zptq “
ÝÑ
H ipt, zq for i “ 0, . . . , N ´ 1 and t P rti, ti`1s

zptiq “ zi for i “ 0, . . . , N ´ 1

mipzpti`1, ti, ziq, zi`1q “ 0 for i “ 0, . . . , N ´ 2

b0pz0q “ 0 P Rn

ψiptik , zikq “ 0 for i “ 1, . . . , N ´ 1 and ik P v0, Nw
bf ptf , zptf , tN´1, zN´1qq “ 0 P Rn.

(17)

with ÝÑH ipt, zq the true Hamiltonian vector field on the sub-interval rti, ti`1s, and zi the unknowns of the
problem, for i “ 0, . . . , N ´ 1. The third equation is the matching conditions where zpti`1, ti, ziq is the
solution at ti`1 of the Cauchy problem

9zptq “
ÝÑ
H ipt, zptqq, zptiq “ zi. (18)
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In general, these matching equations become

mipzpti`1, ti, ziq, zi`1q “ zpti`1, ti, ziq ´ zi`1 “ 0 (19)

and are just continuity conditions. b0 and bf are the boundary equations. Note that the switching conditions
are written ψiptik , zikq “ 0, ik P v0, Nw. It is because you can have more than one condition at a time
tik . However, for a Bang-Bang problem, these equations become ψipti, ziq “ Hi`1pti, ziq ´Hipti, ziq “ 0,
i “ 1, . . . , N ´ 1.

Let now define
‚ Ti “ tt1, . . . , tN´1u

‚ Zi “ tz0, . . . , zN´1u

‚ expZi “ tzpt1, t0, z0q, . . . , zptf , tN´1, zN´1qu

Then all the conditions mi, b0, bf and ψi can be put together in an equation function of the form
EpZi, T i, expZiq “ 0 P R2nN`N´1 if tf is fixed. In this case, the multiple shooting function S is

S : R2nN`N´1
ÝÑ R2nN`N´1

pTi, Ziq ÞÝÑ EpZi, T i, expZiq

The problem (17) is then equivalent to

SpTi, Ziq “ 0.

Therefore the multiple shooting method consists in finding a zero of the function S. We use again Hybrj
to solve this non linear equation. An example with Bang-Bang structure is detailed in §III-B.

Remark 7. If the final time is free, Ti “ tt1, . . . , tN´1, tfu and we add the transversality condition on
the Hamiltonian (8).

D. OCP depending on parameters and homotopic method
The optimal control problem may have some parameters either mathematical or physical. Indeed the

difficulty of shooting method is to have a good initial point because of the low convergence radius of
the Newton algorithm. Continuation method may be used to transform the initial problem, which may be
difficult to solve, into a family of easier problems such that the solutions of these problems converge to the
initial one. A problem of contrast in imaging by NMR is presented in [4]. The problem is non-smooth and
so penalized to get more regularity. The continuation gives an approximation of the solution of the original
problem, and is used to catch the Bang-Singular structure. In [7] is detailed two examples. The first one
presents an orbital transfer where an homotopy from the minimal time problem to the minimum fuel
consumption (Bang-Bang) problem is performed. The second example studies the energy minimization
problem for two-level dissipative quantum systems and uses continuation on physical parameters which
characterize the kind of particles involved.

The parameters can be found in any equation or function of the optimal control problem. Finally, the
optimal control problems which can be solved by Hampath are of the form

pPλq

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

min gptf , xptf q, λq `
ştf
0
f 0pt, xptq, uptq, λqdt

9xptq “ fpt, xptq, uptq, λq, uptq P U Ă Rm, λ P R

b0pxp0q, λq “ 0 P Rn0 , n0 ď n
bf ptf , xptf q, λq “ 0 P Rn1 , n1 ď n.

(20)
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As a consequence, the shooting function either on the smooth or non-smooth case, depends on the
parameter λ. Let consider the smooth case for a sake of convienence. For now, the goal is not to solve
one optimal control problem but to compute the zeros path of the homotopic function

S : R2n
ˆ r0, 1s ÝÑ R2n

pz0, λq ÞÝÑ Spz0, λq

where S is nonlinear and smooth (even with non-smooth control). Assuming that 0 is a regular value for
S, the solution set of Spcq “ 0, c “ pzλ0 , λq is made of smooth curves. Thanks to arc length parametrization
and some regularity conditions on the jacobian of S, the tangent vector 9cpsq of the path can be computed
and it is unique modulo the sign. Finally, Hampath uses Dopri5 from E. Hairer and G. Wanner [10]
[11], for the numerical integration of the following (IVP):

pIV P q

"

9cpsq “ T pcpsqq
cp0q “ pz0

0 , 0q

until sf such as λpsf q “ 1 (the dense output of the integrator is used). The time s is the arc length. To
compute the tangent vector, the jacobian of the homotopic function S is needed. There is still one call
to the shooting method for the intial point in λ “ 0. Then there is no correction like in the well known
Prediction-Correction method (Allgower and Georg. [2]). The following diagram represents the zeros path
of the homotopic function.

λ

z0

pzf0 , 1q

pz00 , 0q

9cpsq

Remark 8. The OCP may depend on a vector parameter Λ P Rk, k ě 1. As a consequence, we replace
the notation Pλ by PΛ. An homotopy on several parameters (from Λ0 to Λf for instance) can be computed
using a scalar reparametrization. This can be done by adding a scalar parameter λ such as Λ “ Λ0 when
λ “ 0 and Λ “ Λf when λ “ 1. The affine homotopic function Λpλq “ p1 ´ λqΛ0 ` λΛf is a simple
example of such a parametrization. You can find more details on homotopy on several parameters at the
end of §II-E.

Remark 9. The mathematical framework of homotopic method in Hampath is discussed in [7].

E. User implementation and the Hampath package
The user only needs to code in Fortran the true Hamiltonian Hr of the system (2) and the function

E defined in §II-B and §II-C. Before that, he must have applied the Pontryagin maximum principle to
get the control upx, pq and the transversality conditions if any. The file hfun.f90 must contain the
true Hamiltonian and efun.f90 the function E. Then during hampath command call (try hampath
-help in a terminal after installation, for documentation) Hampath generates some functions which code,
among others, the shooting function and its jacobian (by automatic differenciation and using variationnal
equations) and the shooting and homotopic method.

The code of the fortran subroutine hfun (in hfun.f90) is :
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Subroutine hfun(t,n,z,nbarc,iarc,lpar,par,H)
use utils
implicit none
integer, intent(in) :: n,lpar,iarc,nbarc
real(kind=8), intent(in) :: t
real(kind=8), dimension(2*n), intent(in) :: z
real(kind=8), dimension(lpar), intent(in) :: par
real(kind=8), intent(out) :: H
IF (nbarc.NE.0) THEN

call printandstop(’Error: wrong number of arcs.’)
END IF
IF (n.NE.0) THEN

call printandstop(’Error: wrong state dimension.’)
END IF
IF (lpar.NE.0) THEN

call printandstop(’Error: wrong par dimension.’)
END IF
H = ...

end subroutine hfun

t is the current time.
n is the dimension of the state x.
z is a vector containing the state and the adjoint vector: z “ px, pq.

nbarc is the number or different arcs. In the smooth case nbarc “ 1.
iarc is the index of the current arc: 9zptq “

ÝÑ
H iarcpt, zq.

lpar is the number of additionnal parameters.
par is a vector containing the lpar parameters. Under the notation Λ P Rk, par ” Λ and lpar ” k.

H is the only output. It returns the value of the true Hamiltonian Hiarcpt, zq.

Obviously, the Hamiltonian may be time dependent. Moreover, additional parameters may be used (see
remark 15). Note that, for the sake of robustness, dimensions are checked (printandstop calls).

The code of the fortran subroutine efun (in efun.f90) is :
Subroutine efun(nbarc,n,Ti,Zi,expZi,lpar,par,ne,E)

use utils
implicit none
integer, intent(in) :: nbarc,n,lpar,ne
real(kind=8), dimension(nbarc+1), intent(in) :: Ti
real(kind=8), dimension(2*n,nbarc), intent(in) :: Zi
real(kind=8), dimension(2*n,nbarc), intent(in) :: expZi
real(kind=8), dimension(lpar), intent(in) :: par
real(kind=8), dimension(ne), intent(out) :: E
IF (ne.NE.0) THEN

call printandstop(’Error: wrong equations dimension.’)
END IF
IF (nbarc.NE.0) THEN

call printandstop(’Error: wrong number of arcs.’)
END IF
IF (n.NE.0) THEN

call printandstop(’Error: wrong state dimension.’)
END IF
IF (lpar.NE.0) THEN

call printandstop(’Error: wrong par dimension.’)
END IF
E = ...

end subroutine efun
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nbarc is the number or different arcs. In the smooth case nbarc “ 1.
n is the dimension of the state x.
Ti is a vector containing the different instants: Ti “ pt0, t1, . . . , tnbarc´1, tf q. Note that t0 is fixed, tf

may be fixed or free and all others instants are free.
Zi is a matrix containing all the states and the adjoint vectors at each instant except tf : Zi “ pz0, . . . , znbarc´1q.

expZi is a matrix of the form: expZi “ pzpt1, t0, z0q, . . . , zptf , tnbarc´1, znbarc´1qq.
lpar is the number of additionnal parameters.
par is a vector containing the lpar parameters. Under the notation Λ P Rk, par ” Λ and lpar ” k.
ne is the dimension of the matrix E, i.e. the number of equations.
E is the only output. It represents all the conditions, i.e. the initial, the final and the matching and the

transversality if any.

Remark 10. Try hampath -help in a terminal after installation, for documentation on all functions
provided by Hampath package.

Remark 11. Only the hfun subroutine is required. In the case where the efun.f90 file is omitted, then
Hampath does not produce all the functions. Only methods to study Hamiltonian flows are available.

Remark 12. Note that you can perform homotopies on several parameters using a scalar reparametrization
of the problem (PΛ). In this case, it is required to have a function Λpλq, λ P R such that Λp0q “ Λ0

and Λp1q “ Λf . The function Λpλq can be explicitly written in hfun and/or efun but this implies
to add a parameter to the variable par. To avoid the issue of the additionnal parameter λ, Hampath
allows the user to implement the function parfun (coding Λp¨q) separately from hfun and efun. The
subroutine parfun should be written in a file parfun.f90. However, a default subroutine parfun
coding Λpλq “ p1´ λqΛ0 ` λΛf is integrated in Hampath. As a consequence, the file parfun.f90 is
not needed if the user wants to do an affine homotopy on the parameters. The code (where Λ ” par) in
the default parfun.f90 file is :

Subroutine parfun(lambda,lpar,par0,parf,par)
implicit none
integer :: lpar
real(kind=8) :: lambda !current scalar homotopic parameter
real(kind=8), dimension(lpar) :: par0 !initial parameters
real(kind=8), dimension(lpar) :: parf !final parameters
real(kind=8), dimension(lpar) :: par
par = (1d0-lambda)*par0 + lambda*parf

end subroutine parfun

Remark 13. Homotopy on the final time tf is possible. The time variable t has to be changed in s such
as t “ t0 ` ptf ´ t0qs “ tfs and tf becomes a new parameter of the vector par. The state x and the
control u have a new parametrization in s and so xptq ” rxpsq and uptq ” rupsq and the problem (20)
becomes :

pPλq

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

min gptf , rxp1q, λq `
ş1

0
tf ¨ f

0ps, rxpsq, rupsq, λqds

9
rxpsq “ tf ¨ fps, rxpsq, rupsq, λq, rupsq P U Ă Rm, λ P R

b0prxp0q, λq “ 0 P Rn0 , n0 ď n
bf ptf , rxp1q, λq “ 0 P Rn1 , n1 ď n

(21)
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The following diagram, Fig. 1, resumes the main functionnalities of the Hampath package.

efun
EpTi, Zi, expZi,Λq

hfun
Hrpt, z,Λq

dE

ÝÑ
H

p BHr

Bp ,´ BHr

Bx q

Spti, zi,Λq

d
ÝÑ
H

S1pti, zi,Λq T pS1pti, zi,Λqq

ssolve

shooting method

hampath

continuation method

expdhvfun

variational equations

Tapenade

Tapenade

Dopri5

VAR

Dopri5

Dopri5

VAR

Dopri5

Hybrj

User functions
Available for use

Fortran 90

Fig. 1. Global diagram

Finally, from the true Hamiltonian and all the conditions, Hampath:
‚ produces automatically the state-costate equations (thanks Tapenade)
‚ computes the shooting function by numerical integration (thanks Dopri5)
‚ provides the VARiationnal equations (in [12] are compared variationnal equations with classical finite

differences) used in the jacobian of the shooting function (thanks Tapenade)
‚ integrates the variationnal equations so that this diagram commutes

pIV P q
Numerical integration
ÝÝÝÝÝÝÝÝÝÝÝÑ Spz0,Λq

Derivative

§

§

đ

§

§

đ

Derivative

pV ARq
Numerical integration
ÝÝÝÝÝÝÝÝÝÝÝÑ BS

Bz0
pz0,Λq
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III. EXAMPLES

A. Example 1: a simple problem
We define the first example which has a smooth optimal control law:

pPλq

$

’

’

’

’

&

’

’

’

’

%

min
ş1

0
u2dt

9x “ v
9v “ ´λ2v ` u
xp0q “ x0, xp1q “ xf
vp0q “ v0, vp1q “ vf .

(22)

Remark 14. This example is provided in the Hampath package. Try hampath -newSimpleShooting
to copy the files defining this problem (hfun.f90, efun.f90 and a main script) and follow instructions
to compile and solve the problem.

We first define the true Hamiltonian and the conditions according to the Pontryagin maximum principle,
which are written in hfun.f90 and efun.f90.

Define the true Hamiltonian
The user needs to provide first the Fortran subroutine hfun coding the true Hamiltonian which is

in this case
Hrpzq “ Hpz, upzqq “ ´upzq2 ` pxv ` pvp´λv

2
` upzqq,

with upzq “ pv{2 and z “ pq, pq “ px, v, px, pvq P R4. See hfun.f90.

Define the function E

The second Fortran subroutine required from the user is efun which codes all the limits conditions.
In this case, there is no additional transversality conditions because the state is completely fixed and the
final time is not free. The function Epzp0q, zptf qq is

Epzp0q, zptf qq “ pxp0q ´ x0, vp0q ´ v0, xptf q ´ xf , vptf q ´ vf q P R4,

with tf “ 1. See efun.f90.

Remark 15. Almost all the functions provided in the package (sfun, ssolve, exphvfun . . . ) have
the variable par which permits to pass the additional parameters to the Fortran subroutines hfun
and efun. They can be used as homotopic parameters or constant values. The vector par is par “
px0, v0, xf , vf , λq.

Main script
In the main script, the problem is first solved for λ “ 0 and px0, v0, xf , vf q “ p´1,´1, 0, 0q using the

shooting method and then is computed the zeros path solution of pPλq for λ P r0, 1s.
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1) Matlab/Octave interface: If you have installed the Matlab / Octave version, then in the main
script main.m, are plotted the zeros path and the extremal solution of pP1q with the associated control.
Finally we check the order two conditions of optimality by checking a rank condition on a particular
matrix.

Remark 16. In hfun.f90, is written an auxiliary subroutine which computes the control. This subroutine
has the same input variables than hfun subroutine and one output variable, thus Hampath will produce
a Matlab / Octave function which interface the control subroutine and which can be called in the
main script with the same syntax as Matlab / Octave hfun.

Remark 17. All auxiliary subroutines with the same input variables than hfun and one output variable
will have an interface which can be called with the same syntax as Matlab / Octave hfun.

Remark 18. All auxiliary subroutines called in hfun must be written in hfun.f90 and all auxiliary
subroutines called in efun must be written in efun.f90.

2) Fortran stand alone version: If you have installed the Fortran stand alone version, then you can
install GnuPlot to plot results. The main script is main.f90. There is nothing equivalent to remark
17, in the fortran stand alone version.

B. Example 2 : a Bang-Bang problem
We define the second example which has a bang-bang optimal control law:

pPλq

$

’

’

’

’

’

&

’

’

’

’

’

%

min tf
9x “ v
9v “ ´λ2v ` u
|u| ď 1
xp0q “ ´1, xp1q “ 0
vp0q “ ´1, vp1q “ 0.

(23)

Remark 19. This example is provided in the Hampath package and has a free final time. Try hampath
-newMultipleShooting to copy the files defining this problem (hfun.f90, efun.f90 and a main
script) and follow instructions to compile and solve the problem.

We first define the true Hamiltonian and the conditions according to the Pontryagin maximum principle,
which are written in hfun.f90 and efun.f90.

Define the true Hamiltonian
We know that the optimal structure is bang-bang with two arcs. A first arc positive, i.e. u “ 1, and a

second arc negative, i.e. u “ ´1. The user needs to provide first the Fortran subroutine hfun coding
the true Hamiltonian which is in this case

Hrpzq “ Hpz, upzqq “ ´1` pxv ` pvp´λv
2
` upzqq,

with z “ pq, pq “ px, v, px, pvq P R4 and upzq “ `1 for the first arc, and upzq “ ´1 for the second arc.
The value of the control depends on the sign of pv which is positive and then negative. It becomes 0
at the switching time t1 between the two bang arcs. See the role of the iarc and nbarc variables in
hfun.f90.
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Define the function E

The second Fortran subroutine required from the user is efun which codes all the limits conditions.
In this case, there is no additional transversality conditions on the adjoint vector because the state is
completely fixed. The function Epz0, z1, t1, tf , zpt1, t0 “ 0, z0q, zptf , t1, z1qq is

E “ pxp0q ` 1, vp0q ` 1, xptf q, vptf q, z1 ´ zpt1, t0 “ 0, z0q, pv,1, Hrpzptf , t1, z1qqq P R10,

where z1 ´ zpt1, t0 “ 0, z0q “ 0 are the matching conditions at the switching time t1, where we note
z1 “ px1, v1, px,1, pv,1q, so pv,1 “ 0 is the condition which makes that the control u changes its sign at
the switching time, and where Hrpzptf , t1, z1qq “ 0 is the condition of transversality on the Hamiltonian,
since the final time is free, see eq. (8). See efun.f90 file for the code of this subroutine.

Remark 20. Almost all the functions provided in the package (sfun, ssolve, exphvfun . . . ) have
the variable par which permits to pass the additional parameters to the Fortran subroutines hfun and
efun. They can be used as homotopic parameters or constant values. The vector par is here scalar since
it is par “ λ.

Main script
In the main script, the problem is first solved for λ “ 0 using the shooting method and then is computed

the zeros path solution of pPλq for λ P r0, 0.5s.

1) Matlab/Octave interface: If you have installed the Matlab / Octave version, then in the main
script main.m, are plotted the zeros path and the extremal solution of pP0.5q with the associated control.

Remark 21. Same as remarks 16, 17 and 18.

2) Fortran stand alone version: If you have installed the Fortran stand alone version, then you can
install GnuPlot to plot results. The main script is main.f90
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